Arsenate-Resistant Genes in Egyptian Rice Cultivars as Soil Pollution Sensors

نویسندگان

  • Elsayed E. Hafez
  • Mohamed A. Rashad
  • Sayed M. Hassan
چکیده

The main objective of the present study was to investigate arsenate [As (V)] resistance genes in rice cultivars grown in arsenic contaminated Egyptian soil in order to genetically induce resistance against arsenic in the local rice varieties as well as defining contaminated rice grains and/or soil. Three local rice cultivars; Sakha 102-104 were cultivated on modified Murashige and Skoog Basal Medium (MS medium) containing elevated concentrations of arsenate (0.1, 1 and 10 mg/l). The three varieties showed different resistant attitudes against arsenate with Sakha 104 being the most resistant. Extracted messenger RNA (mRNA) from treated and untreated Sakha 104 plantlets was scanned using differential display to demonstrate the arsenate resistant genes using three different arbitrary primers. About 100 different RNAs with (1500 bp 50 bp) were obtained from which seven were up-regulated genes, subjected to DNA cloning using TOPO TA system and the selected clones were sequenced. The sequence analysis described four genes out of the seven namely disease resistance protein RPM1, Epstein-Barr virus EBNA-1-like, CwfJ family protein and outer membrane lipoprotein OmlA while the other three genes were hypothetical proteins. It is concluded the four induced genes in the resistant rice cultivar considered as a direct response to arsenic soil pollution. Genes detected in the present study can be used as geno-sensors for rice grains and soil contamination with As (V). Moreover, local rice cultivars may be genetically modified with such genes to induce high resistance and to overcome arsenic soil pollution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenate Phytoremediation-linked Genes in Egyptian 2 Rice Cultivars as Soil Pollution DNA Geno-Sensor

Rice (Oryza sativa L.) is the most important crop all over the world. It is considered the main 19 food of 50% of the world population especially in Egypt. However, rice not only accumulates some of 20 heavy metals such as cadmium but also accumulate arsenate (As). Arsenic contamination in water and 21 food resulted in many implications for millions of people leading cancer. For that reason, th...

متن کامل

Uptake kinetics of arsenic species in rice plants.

Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was...

متن کامل

Study of Biochemical and Molecular Changes of Iranian Rice Cultivars in Interaction with Bacterial Pathogen Xanthomonas oryzae pv. oryzae Causes Leaf Blight Disease

Rice bacterial blight caused by Xanthamonos oryzae pv. oryzae is one of the most destructive bacterial diseases of rice in some areas of rice cultivation in the world, especially in the tropics of Asia. The low efficiency of disease management methods, especially chemical methods, has led to more research on recognizing resistant cultivars and understanding resistance mechanisms through the stu...

متن کامل

Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains.

AIMS To analyse the arsenic-resistant bacterial communities of two agricultural soils of Bangladesh, to isolate arsenic-resistant bacteria, to study their potential role in arsenic transformation and to investigate the genetic determinants for arsenic resistance among the isolates. METHODS AND RESULTS Enrichment cultures were performed in a minimal medium in the presence of As(III) and As(V) ...

متن کامل

Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice

Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017